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Abstract

The purpose of this paper is to convey the readers several useful remarks for understanding, simulating and verifying
the Kalman filter (KF) computer codes. A tutorial, example-based approach is employed to present several KF issues of
considerable importance in engineering practice, and to suggest some check points on Kalman filtering verification process.
Some illustrative examples are accompanied where necessary to the readers for better understanding the fundamental basis
and for enhancing the reliability (correctness) of the self-developed computer codes before larger, complicated KF designs
are performed. Notes on two forms of discrete-time Kalman filter loop are pointed out. Methods for determining the pro-
cess noise covariance matrix are provided. Simulation of the dynamic process is discussed. Guidelines for verification of
filtering solutions are provided, which cover (1) the consistency check between the discrete-time to the continuous-time
covariance and gain matrices; (2) evaluation of estimator optimality with sensitivity analysis and consistency check
between theoretical and simulation results.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The Kalman filter [1–6] (KF) or its nonlinear version, extended Kalman filter (EKF), has been the most well
known sequential data assimilation scheme for solving the Wiener problem in a generally easier way. It has
been applied in the areas as diverse as aerospace, marine navigation, radar target tracking, control systems,
manufacturing, and many others. For the aerospace navigation applications, it has been very popular in
GPS/INS and GPS stand-alone navigation designs and is recognised as the navigation’s integration work-
horse. A navigation filter is commonly designed by use of a Kalman filter to estimate the vehicle state variables
and suppress the navigation measurement noise. The Kalman filter not only works well in practice, but also it
is theoretically attractive because it has been shown that it is the filter that minimizes the variance of the esti-
mation mean square error.

Studying the operation of the Kalman filter leads to an appreciation of the inter-disciplinary nature of sys-
tem engineering. However, implementation of the Kalman filter is a challenge to some system designers. A
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deeper understanding of the theory and awareness of practical implementation can only be experienced by
employing the filter in practical situation. It may not be such a difficult task to develop a KF computer code.
However, it is a challenge to assure its reliability. Even after constructing the program code, some designers
may not be able to ensure the correctness of the computer code developed by them. Based on the consider-
ation, several practical remarks are pointed out in this article for clarifying some fundamental concept and
conveying some important phenomena. For better illustration, numerical examples are provided where neces-
sary to the readers for better understanding the fundamental basis. The remarks presented in this paper are
beneficial to the KF designers, which can be employed as guidelines for developing reliable Kalman filter com-
puter codes.

This paper is organized as follows. In Section 2, additional notes on discrete-time Kalman filter (DTKF)
loop are pointed out. In Section 3, determination of the process noise covariance matrix is presented. Simu-
lation of the dynamic process is discussed in Section 4. In Section 5, relation of the DTKF to the continuous
Kalman filter (CKF) is shown. The evaluation of estimator optimality for verification of minimum variance
optimality with sensitivity analysis and consistency check is provided in Section 6. The conclusion is given in
Section 7.

2. Additional notes on discrete-time Kalman filter loop

Consider a dynamical system whose state is described by a linear, vector differential equation. The process
model and measurement model are represented as
Process model : _x ¼ FxþGu; ð1Þ
Measurement model : z ¼ Hxþ v; ð2Þ
where the vectors u(t) and v(t) are both white noise sequences with zero means and mutually independent:
E½uðtÞuTðsÞ� ¼ Qdðt � sÞ; ð3aÞ
E½GðtÞuðtÞðGðtÞuðsÞÞT� ¼ GQGTdðt � sÞ; ð3bÞ

E½vðtÞvTðsÞ� ¼ Rdðt � sÞ; ð4Þ
E½uðtÞvTðsÞ� ¼ 0; ð5Þ
where d(t � s) is the Dirac delta function, E[ Æ ] represents expectation, and superscript ‘‘T’’ denotes matrix
transpose.

2.1. The continuous Kalman filter

The state estimate equation of the continuous Kalman filter equations is represented as
_̂x ¼ Fxþ Kðz�Hx̂Þ: ð6Þ
The propagation of the error for a continuous Kalman filter can be described by the Riccati equation,
_P ¼ FPþ PFT � PHTR�1HPþGQGT ð7Þ
and the continuous filter gain is obtained through the calculation
K ¼ PHTR�1: ð8Þ

The discrete filter gain and continuous filter gain are related by
K ¼ Kk

Dt
; ð9Þ
where Dt = tk+1 � tk represents the sampling period. When the system reaches steady-state, _P ¼ 0, Eq. (7)
becomes an Algebraic Riccati Equation (ARE), which can be solved for the steady-state minimum covariance
matrix.
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2.2. Two forms of discrete time Kalman filter loop

Expressing Eqs. (1) and (2) in discrete-time equivalent form via discretisation of a continuous time system
leads to
xðtkþ1Þ ¼ Uðtkþ1; tkÞxðtkÞ þ
Z tkþ1

tk

Uðtkþ1; sÞGðsÞuðsÞds ð10Þ
for which either two of the following abbreviated notations can be used:
xkþ1 ¼ Ukxk þ wk; ð11aÞ
xkþ1 ¼ Ukxk þ Ckwk; ð11bÞ
zk ¼ Hkxk þ vk: ð12Þ
In the above equation, the state vector xk 2 Rn, process noise vector wk 2 Rn, measurement vector zk 2 Rm,
and measurement noise vector vk 2 Rm. Eq. (11b) can be treated as a special case of (11a) for Ck = I. In
Eqs. (11) and (12), both the vectors wk and vk are zero mean Gaussian white sequences having zero cross-cor-
relation with each other:
E½wkwT
i � ¼ Qkdik ð13aÞ
or alternatively
E½ðCkwkÞðCiwiÞT� ¼ CkQkCkdik; ð13bÞ
E½vkvT

i � ¼ Rkdik; ð14Þ
E½wkvT

i � ¼ 0 for all i and k; ð15Þ
where Qk is the process noise covariance matrix, Rk is the measurement noise covariance matrix, and Uk is the
state transition matrix. The symbol dik stands for the Kronecker delta function:
dik ¼
1; i ¼ k;

0; i 6¼ k:

�

Two forms of the discrete-time Kalman filter loop are summarized as follow.

(1) Five-step recursive loop
The five-step recursive loop algorithm iteratively applies two stages of computations [3]:

Stage 1: prediction steps/time update equations

x̂�kþ1 ¼ Ukx̂k; ð16Þ
P�kþ1 ¼ UkPkU

T
k þQk: ð17aÞ

Stage 2: correction steps/measurement update equations

Kk ¼ P�k HT
k ½HkP�k HT

k þ Rk��1
; ð18Þ

x̂k ¼ x̂�k þ Kk½zk �Hkx̂�k �; ð19Þ
Pk ¼ ½I� KkHk�P�k : ð20Þ

If Eq. (11b) is used, Eq. (17b) should be use to replace Eq. (17a):

P�kþ1 ¼ UkPkU
T
k þ CkQkC

T
k : ð17bÞ

Eqs. (16)–(20) constitute the Kalman filter for the model of Eqs. (11) and (12). Eqs. (16) and (17) are the
time update equations of the algorithm from k to step k + 1, and Eqs. (18)–(20) are the measurement
update equations. These equations incorporate a measurement value into a priori estimation to obtain
an improved a posteriori estimation. In the above equations, Pk is the error covariance matrix defined by
E½ðxk � x̂kÞðxk � x̂kÞT�, in which x̂k is an estimation of the system state vector xk, and the weighting
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matrix Kk is called the Kalman gain matrix. The Kalman filter algorithm starts with an initial condition
value, x̂�0 and P�0 . When new measurement zk becomes available with the progression of time, the esti-
mation of states and the corresponding error covariance would follow recursively ad infinity. The differ-
ence ðzk �Hkx̂�k Þ in Eq. (19) is generally referred to as the measurement innovation, or the residual. The
innovation reflects the discrepancy between the predicted measurement Hkx̂�k and the actual measure-
ment zk. An innovation of zero means that the two are in complete agreement. The mean of the corre-
sponding error of an unbiased estimator is zero.

(2) Three-step recursive loop
The alternative loop which only has three steps is summarized as follows:
Kk ¼ P�k HT
k ½HkP�k HT

k þ Rk��1
; ð21Þ

x̂k ¼ Ukx̂k þ Kk½zk �HkUkx̂k�; ð22Þ

P�kþ1 ¼ Uk½I� KkHk�P�k UT
k þQk ð23aÞ

which, when represented by Eq. (11b), has the alternative representation form:

P�kþ1 ¼ Uk½I� KkHk�P�k UT
k þ CkQkC

T
k : ð23bÞ

Eq. (22) can be seen as the combination of Eqs. (16) and (19); while Eq. (23) can be seen as the combi-
nation of Eqs. (17) and (20). It should be noted that only the predicted (a priori) covariance is available
during the recursive loop; the updated (a posteriori) covariance information does not appear explicitly.
3. Determination of the process noise covariance matrix

The matrices Q(t) – the power spectral density (PSD) matrix, and Qk – the covariance matrix are different.
There is an important distinction between the matrices Q(t) and Qk. A PSD matrix may be converted to a
covariance matrix through multiplication by the Dirac delta function, d(t � s), which has the units of 1/time.
Determination of the process noise covariance matrix is discussed mainly based on the assumption that the
forcing function is treated either random or deterministic.
3.1. Fundamental background

(1) Approach 1: Treat the forcing function as random
This approach is based on the continuous-time white noise approximation. Using the Taylor’s series
expansion, the state transition matrix can be represented as
Uk ¼ eFDt ¼ Iþ FDt þ F2Dt2

2!
þ F3Dt3

3!
þ � � � ð24Þ

For the process model given by Eq. (11b), the noise input is given by

Ckwk ¼
Z tkþ1

tk

Uðtkþ1; sÞGðsÞuðsÞds; ð25Þ

where we defined tk � kDt and tk+1 � (k + 1)Dt, and the calculation of process noise covariance, as
defined in Eq. (13b) leads to

CkQkC
T
k ¼ E½ðCkwkÞðCkwkÞT� ¼ E

Z tkþ1

tk

Uðtkþ1; nÞGðnÞuðnÞdn

� � Z tkþ1

tk

Uðtkþ1; gÞGðgÞuðgÞdg

� �T
( )

¼
Z tkþ1

tk

Z tkþ1

tk

Uðtkþ1; nÞGðnÞE½uðnÞuTðgÞ�GTUTðtkþ1; gÞdndg

¼
Z tkþ1

tk

Uðtkþ1; gÞGQGTUTðtkþ1; gÞdg: ð26Þ
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It is seen that when Uk � I, the first-order approximation is

CkQkC
T
k � GQGTDt: ð27Þ

The expression when including the higher order terms is given by

CkQkC
T
k ¼ GQGTDt þ ðFGQGT þGQGTFTÞDt2

2!
þ � � �

On the other hand, for the process model given by Eq. (11a), the noise input is then given by

wk ¼
Z tkþ1

tk

Uðtkþ1; sÞGðsÞuðsÞds

and the covariance of the process noise, wk, as defined in Eq. (13a) leads to

Qk ¼ E½wkwT
i � ¼

Z tkþ1

tk

Uðtkþ1; gÞGQGTUTðtkþ1; gÞdg ð28Þ

and when Uk � I

Qk � GQGTDt: ð29Þ
Eq. (29) can be regarded as a special case of Eq. (27) where the noise gain is set as an identity matrix:
Ck = I. For a complete description of the influence by the random forcing functions, the term CkQkC

T
k

should be used and the relation CkQkC
T
k � GQGTDt always holds valid for both types of representation.

(2) Approach 2: Treat the forcing function as deterministic
This approach is based on the piecewise white noise or discrete white noise approximation. Assuming
that the forcing function u(s) has a constant value of u(t) = wk over the integration interval, i.e., for
t 2 [tk,tk+1] for all k = 0,1,2, . . . , then the noise gain
Ck ¼
Z tkþ1

tk

Ukðtkþ1; sÞGðsÞds: ð30Þ

Eq. (30) can be written as the following series expansion:

Ck ¼ GDt þ FGDt2

2!
þ � � � ð31Þ

Hence, for the first-order approximation, we have Ck � GDt when Uk � I (which is equivalently to
F = 0), and

CkQkC
T
k � ðGDtÞQkðGDtÞT: ð32Þ

Equating Eqs. (32) and (27) gives

Qk �
Q

Dt
: ð33Þ

Note the difference between Eqs. (33) and (29). It is important that Qk’s ingredients in the two equations
are different.
3.2. Illustrative example

For the sake of better illustration, the radar target tracking in one dimension is employed in this and also
the following sections where applicable. When modelling for a vehicle kinematics, the positions at tk and tk+1

may be related by
pkþ1 ¼ pk þ _pkDt þ €pk
Dt2

2!
þ p

...
k
Dt3

3!
þ � � � ;
where the number of dots indicates the order of differentiation. The model is approximated by a truncated
series, either using a constant velocity model:
pkþ1 ¼ pk þ _pkDt ð34Þ
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or a constant acceleration model:
piþ1 ¼ pi þ _piDt þ €pi
Dt2

2!
; ð35Þ
where pi and _pi of Eqs. (34) and (35) are considered constant for the time interval Dt, and €pk of Eq. (35) is
considered constant for the time interval Dt. The validity of these assumptions is dependent on the length
of Dt and the degree of the linearity of the vehicle’s motion. The differential equation of the observed system
ca be represented either of the following forms:
d

dt

x1

x2

� �
¼

0 1

0 0

� �
x1

x2

� �
þ

0 0

0 1

� �
0

uðtÞ

� �
ð36Þ
or
d

dt

x1

x2

� �
¼

0 1

0 0

� �
x1

x2

� �
þ

0

1

� �
uðtÞ; ð37Þ
where the state variables are the position x1 and the velocity x2. The model governed by Eq. (1) leads to
F ¼
0 1

0 0

� �
; H ¼ 1 0½ �
and these signals satisfy the following:
E½uðtÞuTðsÞ� ¼ Qdðt � sÞ; E½vðtÞvTðsÞ� ¼ Rdðt � sÞ; E½uðtÞvTðsÞ� ¼ 0:
Expressing the models in discrete-time equivalent form, the corresponding Uk, Qk and H are given by
Uk ¼
1 Dt

0 1

� �
: ð38Þ
(1) Approach 1
The matrices for representing Eq. (36) or (37), can be either of the following forms
G ¼
0 0

0 1

� �
; Q ¼

0 0

0 q

� �
; uðtÞ ¼

0

uðtÞ

� �
ðform 1Þ ð39Þ

or

G ¼
0

1

� �
; Q ¼ q; uðtÞ ¼ uðtÞ ðform 2Þ; ð40Þ

where the scalar u(t) � N(0,q). It should be noted that given a matrix G with dimension m · n, Q is a
square matrix with dimension n · n and GQGT has dimension m · m. As was mentioned earlier, the term
GQGT describes the noise input and for this example

GQGT ¼
0 0

0 q

� �
:

Calculation of covariance through Eq. (26) yields

CkQkC
T
k ¼ E½wkwT

k � ¼
Z tkþ1

tk

Uðtkþ1; gÞGQGTUTðtkþ1; gÞdg

¼

R tk
tk

1 g

0 1

� �
0 0

0 1

� �
0 0

0 q

� �
0 0

0 1

� �
1 0

g 1

� �
dg ðvia form 1Þ

R tkþ1

tk

1 g

0 1

� �
0

1

� �
q 0 1½ �

1 0

g 1

� �
dg ðvia form 2Þ

8>>><
>>>:

¼
Dt3

3
Dt2

2

Dt2

2
Dt

" #
q ð41Þ
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(2) Approach 2
Calculation of noise gain through Eq. (30) yields
Ck ¼
Z tkþ1

tk

UkGds ¼
Z tkþ1

tk

1 s

0 1

� �
0

1

� �
ds ¼

Dt2

2

Dt

" #
:

This result can be interpreted as follows. Given the wk to be the acceleration during the kth sampling
period (of length Dt), in the increment in the velocity during this period is wkDt, while the effect of this
(piecewise) constant acceleration on the position is Dt2

2
wk, where the scalar wk � Nð0; r2

wÞ is the noise var-
iance of the random acceleration. Performing the CkQkC

T
k calculation gives

CkQkC
T
k ¼

Dt2

2

Dt

" #
r2

w
Dt2

2
Dt

h i
¼

Dt4

4
Dt3

2

Dt3

2
Dt2

" #
r2

w �
Dt3

4
Dt2

2

Dt2

2
Dt

" #
q: ð42Þ

In the present example, the relation holds true:

Qk �
Q

Dt
¼ r2

w ¼
q
Dt

ð43Þ

since Q = q. The difference between Eqs. (40) and (42) should be mentioned. Both models are approx-
imations. The advantage from Approach 2 is that the process noise intensity is easily related to physical
characteristics of the motion, while Approach 1 is more convenient when one deal with variable sam-
pling intervals [2].

4. Simulation of the dynamic process

In the subsequent discussion, three methods are presented for simulation of the dynamic process. The first
two are base on the assumption of deterministic inputs while the third one is based on the random inputs.

4.1. Fundamental basis

4.1.1. Numerical integration for the system states of equations

If the forcing function u is regarded as constant (i.e., a deterministic input) during the sampling period
Dt(=tk+1 � tk), then Ck in the discrete-time form can be determined, and the numerical integration approach
can be used. By use of the forward Euler approximation technique, we have
_xðtkÞ �
xðtkþ1Þ � xðtkÞ

tkþ1 � tk
;

where x(tk) is though of as the sampled data value of the continuous-time signal x(t). Substituting the above
equation into the continuous-time state model results in
xðtkþ1Þ � xðtkÞ
tkþ1 � tk

� FðtkÞxðtkÞ þGðtkÞuðtkÞ:
Consequently, the discrete-time model can be written in the form
xðtkþ1Þ � ½Iþ DtFðtkÞ�xðtkÞ þ DtGðtkÞuðtkÞ: ð44Þ

When compared to Eq. (11b), the matrix Uk can be written as
Uk ¼ Iþ FðtkÞDt þOðDt2Þ ð45Þ

and the gain matrix Ck as
Ck ¼ GðtkÞDt þOðDt2Þ: ð46Þ

Eqs. (45) and (46) are the first-order approximations of Eqs. (24) and (31), respectively.
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4.1.2. Numerical integration applied to each of the states

For some of the large systems where calculation of Uk and Ck are not preferable, performing the numerical
integration for each of the states is another good choice. The initial-value problem described by the first-order
ordinary differential equation:
dx

dt
¼ f ðx; tÞ subject to xðt0Þ ¼ x0
can be solved by employing the Euler’s method:
xkþ1 � xk þ Dtf ðxk; tkÞ ¼ xk þ Dt _xk ð47Þ

which is obtained by employing the forward difference approximation.

(3) Decomposition of the noise covariance matrix

If Qk is symmetric and positive, it is possible to obtain a lower triangular matrix C through the Cholesky

factorization
CCT ¼ Qk ð48Þ

and 2 39
xkþ1 ¼ Ukxk þ C � randn �
1

..

.

1

64 75>=>;n� 1; ð49Þ
where xk is an n · 1 matrix and randn stands for the unity Gaussian white sequence. It should be mentioned
that singularity should be avoided when Eq. (49) is used. The process noise covariance matrix using Approach
2 (the direct discrete time models) are positive semidefinite of rank 1, while the one using Approach 1 (from the
discretized continuous time models) are of full rank.

4.2. Illustrative example

Based on the three methods discussed in Part A, the example in Section 3 will be employed for illustration.

4.2.1. Numerical integration for the system states of equations
xkþ1 ¼ Ukxk þ rw � randn � Ck
for which the process noise matrix is represented by rw Æ randn Æ Ck.
x1ðk þ 1Þ ¼ x1ðkÞ þ x2ðkÞ � Dt þrw � randn � Dt2

2

� �
;

x2ðk þ 1Þ ¼ x2ðkÞ þ rw � randn � Dt: h i

When the second-order term is included, then the noise gain Ck ¼ Dt2

2
Dt

T

, and the second order term (shown
inside the bracket) is included; while when the first-order approximation is used, the noise gain becomes
Ck = [0Dt]T, and the term in the bracket is neglected.

4.2.2. Numerical integration applied to each of the states
x2ðk þ 1Þ ¼ x2ðkÞ þ rw � randn � Dt;

x1ðk þ 1Þ ¼ x1ðkÞ þ x2ðk þ 1Þ � Dt;
where rw �
ffiffiffiffiq
Dt

p
.

The results are essentially same those obtained in Part (1) when the noise gain is obtained using the first-
order approximation. The other distinction is that x2 is calculated before x1 is. This is to reflect the fact that x2

is the derivative of x1 and such arrangement provides latest x2 information for performing x1 calculation.
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4.2.3. Decomposition of the noise covariance matrix using the Cholesky factorization� �

xkþ1 ¼ Ukxk þ C � randn � 1

1
;

c11 0

c21 c22

� �
c11 c21

0 c22

� �
¼ q11 q12

q12 q22

� �

or
c2
11 c11c21

c11c21 c2
21 þ c2

22

" #
¼

q11 q12

q12 q22

� �
;

c11 ¼
ffiffiffiffiffiffi
q11

p
; c21 ¼

q12ffiffiffiffiffiffi
q11

p ; c22 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q22 �

q2
12

q11

s
:

The singularity problem addressed in Section 3 is demonstrated. Follow up the same example, decomposition
of CkQkC

T
k for the results from the two approaches gives

– Approach 1:
CkQkC
T
k ¼

Dt3

3
Dt2

2

Dt2

2
Dt

" #
q

leads to

C ¼

ffiffiffiffiffi
Dt3

3

q
0ffiffiffiffiffi

3Dt
p

2

ffiffiffiffi
Dt
p

2

2
4

3
5 ffiffiffi

q
p

which is of full rank.
– Approach 2:
CkQkC
T
k ¼

Dt4

4
Dt3

2

Dt3

2
Dt2

" #
r2

w �
Dt3

4
Dt2

2

Dt2

2
Dt

" #
q

leads to

C ¼
ffiffiffiffiffi
Dt3
p

2
0ffiffiffiffiffi

Dt
p

0

" # ffiffiffi
q
p

which is of positive semidefinite of rank 1.
5. Relation to the continuous Kalman filtering

The correctness of solutions obtained by the DTKF can be checked with those by the CKF. The main
reason for choosing the CKF as a comparison basis is due to the fact that CKF solutions can be obtained
without complicated computation and with better confidence on the correctness of solutions. In the following
discussion, the results based on the DTKF for Dt! 0 and k!1 will be compared to the steady-state con-
tinuous Kalman filter (SSCKF). The SSCKF uses gains derived from the steady-state covariance and provides
sub-optimal solutions. Expanding Eq. (7) leads to
_P 11 ¼ 2P 12 �
1

r
P 2

11;

_P 12 ¼ P 22 �
1

r
P 11P 12;

_P 22 ¼ q� 1

r
P 2

12:

ð50Þ
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The time varying error covariance and Kalman gain matrix can be obtained using the numerical integration
such as the Euler or the Runge-Kutta integrator. When the system reaches the steady-state, we have
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Fig. 1. Covariance propagation for the discrete time Kalman filter as compared to the continuous time Kalman filter.
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P1 ¼
ffiffiffi
2
p

q1=4r3=4 ðqrÞ1=2

ðqrÞ1=2
ffiffiffi
2
p

q3=4r1=4

" #
; K1 ¼

ffiffiffi
2
p
ðqr Þ

1=4

q
r

� 	1=2

" #
:

For the present example, choosing q = r = 1 gives
P1 ¼
ffiffiffi
2
p

1

1
ffiffiffi
2
p

" #
; K1 ¼

ffiffiffi
2
p

1

" #
:

Fig. 1 shows the covariance propagation for the DTKF, for the cases of sampling period Dt = 1 and Dt = 0.1,
as compared to the CKF.

Checking the numerical values when the simulation time is 10 s (for which it is a reasonable assumption
that the system has reached steady-state), the predicted covariance (a priori), updated covariance (a posteriori)
and Kalman gain matrices, respectively, are obtained as follows:

(1) For Dt = 1 s
P�k!1 ¼
3:11 2:03

2:03 2:03

� �
; Pk!1 ¼

0:76 0:49

0:49 1:03

� �
; Kk!1 ¼

0:757

0:493

� �
:

(2) For Dt = 0.1 s
P�k!1 ¼
1:52 1:07

1:07 1:47

� �
; Pk!1 ¼

1:32 0:93

0:93 1:36

� �
; Kk!1 ¼

0:132

0:093

� �
:

(3) For Dt = 0.01 s
P�k!1 ¼
1:42 1:01

1:01 1:42

� �
; Pk!1 ¼

1:40 1

1 1:41

� �
; Kk!1 ¼

0:014

0:010

� �
:

Fig. 2 provides the filter gains for the case Dt = 0.01. Checking the values between the continuous filter gains
K1 and discrete filter gains Kk!1 when the sampling time is small, e.g., Dt = 0.01 s is employed, it is seen that
K1Dt ¼ 0:01
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Fig. 2. Filter gains for the case of sampling period Dt = 0.01.
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6. Estimator optimality evaluation with sensitivity analysis and consistency check

In this section, verification of minimum variance optimality with sensitivity analysis and consistency check
for the Kalman filter is presented.

6.1. Estimator optimality evaluation with sensitivity analysis

6.1.1. Theoretical error covariance check

The error covariance relationships for a discrete filter with the same structure as the Kalman filter, but with
an arbitrary gain matrix are written as
Pk ¼ ðI� KkHkÞP�k ðI� KkHkÞT þ KkRkKT
k ; ð51Þ

P�kþ1 ¼ UkPkU
T
k þQk ð17aÞ
or, if Eq. (11b) is used,
P�kþ1 ¼ UkPkU
T
k þ CkQkC

T
k : ð17bÞ
The error covariance Pk described in a single differential Eq. is obtained by substituting Eq. (17a) into Eq. (51):
Pk ¼ ðUk � KkHkUkÞPkðUk � KkHkUkÞT þ ðI� KkHkÞQkðI� KkHkÞT þ KkRkKT
k ð52Þ
which has an equivalent form in the CKF:
_P ¼ ðF� KHÞPþ PðF� KHÞT þGQGT þ KRKT: ð53Þ

In view of CKF, Eq. (53) defines the error covariance for the filter with a general filter gain matrix K, which

can be solved for the covariance of an arbitrary gain model. The sensitivity analysis can be conveniently imple-
mented by using such representation. Taking the partial derivative of P1 with respect to K, using oP1

oK
¼ 0 for a

minimum leads to the same result as Eq. (7).
If the fixed-gain matrix K of a filter has been designed for particular values of Q and R, the steady-state

error covariance will vary linearly with the actual process noise spectral density or measurement error spectral
density. If the actual noise variances are assumed fixed and the design values of Q and R are varied, signifi-
cantly different curves result. Any deviation of the design variances, and consequently K, from the correct val-
ues will cause an increase in the filter error variance (a consequence of the optimality of the filter). Further
information on sensitivity analysis can be referred to Gelb [4].

The error covariance for the filter with the arbitrary gain model, can be obtained using Eq. (53):
_P 11 ¼ �2K1P 11 þ 2P 12 þ K2
1r;

_P 12 ¼ _P 21 ¼ �K2P 11 � K1P 12 þ P 22 þ K1K2r;
_P 22 ¼ �2K2P 12 þ K2

2r þ q:

ð54Þ
The covariances are influenced by (1) the actual noise strength (PSD’s) in the external environment; (2) the
gain matrix (which can be any gain matrix and not necessarily the Kalman gain matrix). If the gain matrix
is the Kalman gain matrix, the above equations leads to Eq. (50) and the optimal result with minimum var-
iance will be obtained. By setting _P ¼ 0, the solutions related to arbitrary gains are found to be
P 111 P 121

P 121 P 221

� �
¼ 1

2K11K21

qþ K2
11K21r þ K2

21r ðqþ K2
21rÞK11

ðqþ K2
21rÞK11 K2

11qþ K21qþ K3
21r

" #
: ð55Þ
The results demonstrate the influence of the (steady-state) gain deviation on the variance growth.
For the standard Kalman filter, the filter gain Kk minimizes the following performance index:
J ¼ trðE½eeT�Þ ¼ trðPÞ; ð56Þ
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where tr(Æ) denotes the trace of a matrix and P is obtained using Eq. (55). If there is no uncertainty in the pro-
cess and measurement noise covariances the performance index J attains the global minimum using the stan-
dard Kalman filter. However, in the case that there are uncertainties in Qk or Rk, J would not attain the
minimum. Fig. 3 shows the 3-D plot for the cost function, and the corresponding contour plot for q = r = 1.

6.1.2. Theoretical versus simulated error covariances

To perform statistical analysis of the system actual performance in comparison with the filter estimate of its
statistical performance, the theoretical (predicted) covariance is compared to the simulated (actual) covari-
ance. Continued from the preceding example for illustration, Fig. 4 demonstrates (1) the influence of position
variance and velocity variance due to K1 deviation from the optimal point; (2) influence of position variance
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and velocity variance due to K2 deviation from the optimal point. Results represented by solid lines show the
theoretical prediction results (from Eq. (55)) while results denoted by circles show the statistics based on
numerical simulation results for the collected data.
MSE ¼ 1

N

X
ðx̂� xtrueÞ2;
where N is the number of samples. Such offline single run (simulation) test is based on replacing the ensemble
averages by time averages based on the ergodicity assumption. It is seen that the theoretical prediction and
numerical simulation results are in very close agreement.

6.2. Consistency check between theoretical and simulation results

In addition to optimality check, consistency check for the optimality should be conducted. Since the filter
gain is based on the filter-calculated error covariances, it follows that consistency is necessary for filter opti-
mality. Not all filter divergence is predictable from the Riccati equation solution. Sometimes the actual per-
formance does not agree with theoretical performance. One cannot measure estimation error directly, except
in simulations, therefore it is necessary to find other means to check on estimation accuracy. Whenever the
estimation error is deemed to differ significantly from its expected value as computed by the Riccati equation,
the filter is said to diverge from its predicted performance.

The results were verified using multiple simulations (runs). Fig. 5 shows the 100 ensembles and the one
sigma (1 � r) confidence bound. Data were collected from the 100 simulation runs. Total time for each sim-
ulation run is set to be 10 s with Dt = 0.1 s, which leads to 101 samples per run, and totally gives 10100 samples
for the entire 100 runs. For this example, the mean and variance are computed to be mx = 0.24 (ideally to be
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zero for an unbiased estimator); r = 1.22 (compared to the theoretical prediction to be 1.32 as obtained in
Section 5). Histograms of the position estimation error are obtained and compared to the theoretical one.
The theoretical probability density function (PDF) of the position estimation error are obtained by substitut-
ing the calculated mean and variance into the Gaussian (normal) PDF given by
fX ðxÞ ¼
1ffiffiffiffiffiffi
2p
p

r
exp � 1

2r2
ðx� mxÞ2

� �
:

Theoretical and histograms of the position estimation error are shown as in Fig. 6. Both approaches are in
very good agreement.
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7. Conclusions

This paper has discussed several remarks which are useful for the designers in understanding, simulating
and verifying the Kalman filter computer codes. A tutorial, example-based approach is employed to present
several KF issues of considerable importance in engineering practice, and to suggest some check points on
Kalman filtering verification process. Lessons learned from this paper include: (1) Additional notes on two
forms of the discrete-time Kalman filter loop; (2) Methods for determining of the process noise covariance
matrix; (3) Simulation of the dynamic process; (4) Consistency verification for the discrete-time Kalman filter
as compared to the continuous Kalman filtering; (5) Evaluation of estimator optimality for verification of
minimum variance optimality with sensitivity analysis (of the error growth due to incorrect estimate of the
noise), as well as the consistency check between theoretical and simulation results.
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