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a b s t r a c t

The Kalman filter has been used in a wide variety of engineering applications. There are
two typical forms in implementing the nonlinear Kalman filter in conjunction with linear-
isation trajectory for which calculation of Jacobian matrices is involved: the linearised Kal-
man filter (LKF) and the extended Kalman filter (EKF). This paper aims to serve as a tutorial
to the readers for providing better understanding and correctly implementing the two
forms of nonlinear filters. Some critical remarks useful in designing a nonlinear Kalman fil-
ter are pointed out. Linearisation of the trajectory for the LKF and EKF is discussed. Perfor-
mance degradation due to linearisation error is illustrated. Divergence problem for the LKF
is presented. Implementation practice for the LKF and the EKF via total state estimate in
conjunction with the error state estimate (in which the state variables are incremental
quantities) are provided. Discussion on increase of dynamic process noise to the estimation
precision in LKF and EKF is involved. Clear description of the implementation algorithms is
provided. The step-by-step procedure for performing the filters is provided accompanied
with two geodetic navigation examples. The materials prepared in this paper can be mod-
ified for further development in various applications.

� 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

The Kalman filter (KF) [1–6], commonly used in esti-
mating the system state variables and suppress the mea-
surement noise, has been recognized as one of the most
powerful state estimation techniques. The Kalman filter
is attractive because it has been shown to be able to min-
imize the variance of the estimation mean square error
(MSE). For nonlinear dynamics and/or nonlinear measure-
ment relationships, the problem of estimating the state
variables of the nonlinear systems may be solved using
the nonlinear version of the Kalman filter. Both the Kalman
filter and its nonlinear version, linearised Kalman filter and
extended Kalman filter, has been successfully applied in
engineering applications, e.g., in the areas of aerospace,
marine navigation, radar target tracking, control systems,
manufacturing, and many others. In addition to engineer-
ing applications, the KF can also be employed for time ser-
ies analysis, e.g. to predict stock prices or currency
exchange rate. Studying the operation of the Kalman filter
leads to an appreciation of the inter-disciplinary nature of
system engineering.

Theoretical-oriented paper on error self-correction in
dynamic systems using the innovation sequence was pre-
sented by Hajiyev [7]. Investigators have presented several
Kalman filter related applications in the fields of
navigation, such as GPS receiver position and velocity
determination [8], inertial navigation alignment [9], atti-
tude determination [10,11], and integrated navigation sys-
tem design [12,13]. Shmaliy et al. [8] proposed a thinning
algorithm for real-time unbiased finite impulse response
(FIR) estimation of the local clock time interval error
(TIE) model, and compared to that of three state Kalman
filter, in terms of the Allan deviation and precision time
protocol deviation. Ali and Ushaq [9] presented a reliable
in-motion alignment scheme for a low-cost strapdown
inertial navigation system (SINS) using a consistent and ro-
bust Kalman filter structure, by integrating SINS data with
the Global Positioning System (GPS) by using some form of
measurement matching method. Wang and Jin [10] devel-
oped a mini-type and portable attitude measurement sys-
tem used in self-propelled model trials for the ships, which
involves complete design, calibration and alignment proce-
dure based on the robust Kalman filtering. Zhu et al. [11]
investigated the linear fusion algorithm for attitude deter-
mination using low-cost MEMS-based sensors. Bogatin
et al. [12] assessed the efficiency of the linear Kalman filter
as a method for the estimation of kinematic process ob-
served with electronic tacheometer. In their contribution,
the efficiency of the three-dimensional linear Kalman filter
model, in combination with the law on transfer of vari-
ances and covariances, is controlled using a known refer-
ence trajectory and statistical tests. Salahshoor et al. [13]
presents an integrated design framework to utilize multi-
sensor data fusion techniques for process monitoring
enhancement to detect and diagnose sensor and process
faults. Two different distributed and centralized architec-
tures were presented for integrating the multi-sensor data
based on extended Kalman filter (EKF) data fusion algo-
rithm and developed a new adaptive modified EKF (AME-
KF) algorithm to prevent the filter divergence.

Some important measurement and instrumentation sci-
ence and technology related issues have been presented
[14–17]. For example, an analytical review of the develop-
ment of measurement and instrumentation science is given
by Finkelstein [14]. An overview on modelling in measure-
ment and instrumentation science can be found in [15]. The
basic notions of measurement science are overviewed in
[16]. Graphic-based representations for measurement
science are given in [17], where a general scheme of mea-
surement was proposed that emphasizes the key role of
measured reconstruction. Although some other nonlinear
filters have been proposed, the nonlinear version of Kal-
man filter still plays the vital role in geodetic navigation
as the sensor fusion and data processing tool. As a popular
tool in the filed of measurement science and technology, a
lesson that covers the critical issues on the two forms of
nonlinear Kalman filters are of importance. The two
approaches to Kalman filter approximations for nonlinear
problems yield different implementation equations. Two
of the popular forms are the linearised Kalman filter
(LKF) and the extended Kalman filters (EKF), which
have become standard techniques used in a number of
nonlinear estimation applications. Implementation of the
nonlinear Kalman filter is not as simple as that of
the linear Kalman filter. To serve as a tutorial to the
readers for providing better understanding and correctly
implementing the two forms of nonlinear filters, useful
information on several practical while critical issues
regarding the linearised and extended Kalman filters will
be conveyed.

The LKF and EKF approximate (linearise) the nonlinear
functions in the state dynamic and measurement model.
The EKF is linearised about the current estimate of the state,
whereas the LKF utilizes a precomputed nominal trajectory.
From the theoretical point of view, the LKF and EKF are both
suboptimal since they are propagated analytically through
the first-order linearisation of the nonlinear system. As the
deviation between actual trajectory and nominal one in-
creases, the significance of the higher order terms (hot’s)
in the Taylor series expansion of the trajectory also in-
creases. The LKF approach generally has more efficient
real-time implementation, but it is less robust against non-
linear approximation errors than the EKF. The real-time
implementation of the LKF can be made more efficient by
precomputing the measurement sensitivities, state transi-
tion matrices, and Kalman gains. Nevertheless, the problem
with linearisation about the nominal trajectory is that the
deviation between actual trajectory and nominal one tends
to increase with time. The series approximations in the LKF/
EKF algorithm can lead to poor representations of the non-
linear functions and probability distributions of interest.
The linearisation can lead into large errors in the true pos-
terior mean and covariance of the transformed random var-
iable, which may yield divergence of the filter. In the
average, the EKF generally exhibits better robustness in
comparison with LKF since EKF uses linear approximation
over smaller ranges of state space.

There are two basic ways for implementing the EKF: to-
tal state space formulation (also referred to as the direct for-
mulation) and error state space formulation (also referred
to as the indirect formulation). In the total state space for-
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mulation, the system is essentially dominated by the vehi-
cle motion. On the other hand, the measurement in the error
state space formulation is made up entirely of system er-
rors and is almost independent of vehicle motions. Con-
tent of discussion covers the performance degradation
due to uncertainty in reference trajectory, implementa-
tion practice for the LKF and the EKF via total state esti-
mate in conjunction with the error state estimate, clear
description of the algorithms and step-by-step explana-
tion of the implementation procedures, and summary of
algorithm. The materials presented in this contribution
are beneficial to the nonlinear Kalman filter designers.
The informative materials can be employed as guidelines
for developing a suitable nonlinear Kalman filter design.

This paper is organized as follows. In Section 2, subop-
timal nonlinear Kalman filter are discussed, which covers
the critical characteristics of linearised Kalman filter and
the extended Kalman filter, the connection between total
state estimate and the error state estimate of EKF, and clear
presentation of the associated algorithms. Examples for
geodetic navigation will be employed for illustration. In
Section 3, the example is focused on the example of nom-
inal trajectory unavailable. The illustrative example fo-
cused on the example of nominal trajectory available is
discussed in Section 4. The conclusion is given in Section 5.

2. Suboptimal nonlinear Kalman filter

Some of the materials covered in this section are closely
related to the contents in books by Brown and Hwang [3],
and Grewal and Andrews [5]. However, some in deep
exploration accompanied with informative implementa-
tion algorithms is presented.

Both the LKF and the EKF are recognized as the nonlin-
ear versions of KF, dealing with the case governed by the
nonlinear stochastic differential equations. The two basic
ways of linearising the nonlinear KF problem are (1) linear-
ised Kalman filter (LKF, also known as the perturbation
Kalman filter), which linearises about some nominal tra-
jectory in state space that does not depend on the mea-
surement data; (2) extended Kalman filter (EKF), which
linearises about a trajectory that is continually updated
with the state estimates. From the view points of Taylor’s
series expansion, both LKF and EKF are suboptimal nonlin-
ear filters since both filters achieve the first-order precision
(by neglecting the higher order terms).

Assuming the process to be estimated and the associ-
ated measurement relationship may be written in the
form:

xkþ1 ¼ fðxk; kÞ þwk ð1aÞ

zk ¼ hðxk; kÞ þ vk ð1bÞ

where f and h are known functions, the state vector
xk 2 Rn, process noise vector wk 2 Rn, measurement vector
zk 2 Rm, and measurement noise vector vk 2 Rm.

Both the vectors wk and vk are zero mean Gaussian
white sequences having zero crosscorrelation with each
other:

E wkwT
i

� �
¼

Q k; i ¼ k

0; i–k

(
E vkvT

i

� �

¼
Rk; i ¼ k

0; i–k

(
; E wkvT

i

� �
¼ 0 for all i and k

ð2Þ

where E½�� represents expectation, and superscript ‘‘T”
denotes matrix transpose, Q k is the process noise
covariance matrix and Rk is the measurement noise covari-
ance matrix.

If f and h are continuously differentiable infinitely
often, then the influence of the perturbations on the trajec-
tory can be represented by a Taylor series expansion about
the nominal trajectory. The likely magnitudes of the per-
turbations are determined by the variances of the variates
involved. One can obtain a good approximation by ignoring
terms beyond some order if these perturbations are
sufficiently small relative to the higher order terms of the
expansion.

2.1. The linearised Kalman Filter

Nonlinearity may enter into the problem either in the
dynamics of the process or in the measurement relation-
ship. xk ¼ x�k þ dxk, then

xkþ1 ¼ fðx�k þ dxk; kÞ þwk ð3aÞ

zk ¼ hðx�k þ dxk; kÞ þ vk ð3bÞ

where d denotes perturbations from the nominal.
Assuming dx is small and approximating f functions

with Taylor’s series expansions leading the result as

xkþ1 ¼ fðxk; kÞ ¼ fðx�k; kÞ þ
@fðxk; kÞ
@x

� �����
x¼x�

k

� dxk þ hot’s

It is customary to choose the nominal trajectory x�k to
satisfy the deterministic differential equation x�kþ1 ¼
fðx�k; kÞ; therefore, we have

½xkþ1 � x�kþ1� ¼
@fðxk; kÞ
@x

� �����
x¼x�

k

� dxk þ hot’s

Form zk ¼ hðx�k þ dxk; kÞ þ vk, approximating h func-
tions with Taylor’s series expansions leading the result as

½zk � hðx�k; kÞ� ¼
@hðxk; kÞ

@x

� �����
x¼x�

k

� dxk þ hot’s

By definition dxkþ1 ¼ xkþ1 � x�kþ1 and dzk ¼ zk � hðx�k; kÞ,
and retaining only first-order terms leads to the linearised
models:

linearised dynamics equation : dxkþ1 ¼ Ukdxk þwk

ð4aÞ
linearised measurement equation : dzk ¼ Hkdxk þ vk

ð4bÞ

In this case, the ‘‘measurement” here represents the to-
tal measurement minus the predicted one. The Uk and Hk

matrices are obtained by evaluating the partial derivative
matrices along the nominal trajectory:
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Uk ¼
@f
@x

� �����
x¼x�

k

¼

@f1
@x1

@f1
@x2

� � � @f1
@xm

@f2
@x1

@f2
@x2

� � � @f2
@xm

..

. ..
. . .

. ..
.

@fm
@x1

@fm
@x2

� � � @fm
@xm

2
666664

3
777775

�����������
x¼x�

k

;

Hk ¼
@h
@x

� �����
x¼x�

k

¼

@h1
@x1

@h1
@x2

� � � @h1
@xm

@h2
@x1

@h2
@x2

� � � @h2
@xm

..

. ..
. . .

. ..
.

@hm
@x1

@hm
@x2

� � � @hm
@xm

2
666664

3
777775

�����������
x¼x�

k

ð5Þ

The LKF is computationally advantageous as compared
to the EKF, but it can also suffer from large magnitude
errors if the true and nominal trajectories differ signifi-
cantly [3]. The feedforward error state space Kalman filter
is an example of this configuration. Fig. 1 is the configura-
tion of the LKF (implementation via error sate formula-
tion). Table 1 summarizes the LKF equations.

The nonlinear functions in dynamic and measurement
models are approximated by the first term in their Taylor

series expansion. They are based on the assumption that
local linearisation of the above equations may be a suffi-
cient description of nonlinearity. Also, the measurement
presented to the linearised filter is the total measurement
minus the predicted measurement based on the nominal
position xnom

k (i.e., dzk ¼ zk � hðxnom
k ; kÞ). The basic concept

is that the linearised filter is always estimating the incre-
mental (delta) quantities, and then the total quantities
are reconstructed by adding the incremental estimate to
the nominal part.

2.2. The extended Kalman filter: error state estimate
configuration

A simple effective remedy for the deviation problem is
to replace the nominal trajectory with the estimated tra-
jectory. That is, to evaluate the Taylor series expansion
about the estimated trajectory. The extended Kalman filter
is similar to a linearised Kalman filter except that the lin-
earisation takes place about the filter’s estimated trajec-
tory, rather than a precomputed nominal trajectory. The
only modification required is to replace xnom

k by x̂�k in the
evaluations of partial derivatives. That is, the partial deriv-
atives are evaluated along a trajectory that has been up-
dated with the filter’s estimates; which depend on the
measurements, and therefore the filter gain sequence will
depend on the sample measurement sequence. If the prob-
lem is sufficiently observable (as evidenced by the covari-
ance of estimation uncertainty), then the deviations
between the estimated trajectory (along which the expan-
sion is made) and the actual trajectory will remain suffi-
ciently small that the linearisation assumption is valid.

The problem with linearisation about the nominal tra-
jectory is that the deviation of the actual trajectory from
the nominal trajectory tends to increase with time. The ba-
sic idea of the EKF is to relinearise about each estimate as
soon as it has been computed. When a new state estimate
is made, a better reference state trajectory is then incorpo-
rated into the estimation process. Consequently, one en-
hances the validity of the assumption that deviations from
the reference (nominal) trajectory are small enough to al-
low linear perturbation techniques to be employed with
adequate results. The extended Kalman filter is a somewhat
riskier filter than the regular linearised filter. It may be bet-
ter on the average than the linearised filter, but it may also
be more likely to diverge in some unusual situations.

There are two configurations in the EKF implementation
[3,5,6]: error state estimate vs. total state estimate. The
principal drawback to this approach is that it tends to in-

Fig. 1. Configuration of the LKF (error sate estimate formulation).

Table 1
Summary of LKF equations (error state formulation).

– Nonlinear model:
Nonlinear nominal trajectory model: xnom

kþ1 ¼ fðxnom
k ; kÞ

Nonlinear measurement model: zk ¼ hðxk; kÞ þ vk

– Linearised perturbed trajectory model:
Linearised dynamic model: dxkþ1 ¼ ½@f

@x�
��
x¼xnom

k
dxk þwk

Linearised measurement model: dzk ¼ ½@h
@x�
��
x¼xnom

k
dxk þ vk

Kk ¼ P�k HT
k ½HkP�k HT

k þ Rk��1 ðT1Þ

dx̂k ¼ dx̂�k þ Kk½dzk �Hkdx̂�k � ðT2Þ

x̂k ¼ xnom
k þ dx̂k ðT3Þ

Pk ¼ ½I� KkHk�P�k ðT4Þ

dx̂�kþ1 ¼ Ukdx̂k ðT5Þ

P�kþ1 ¼ UkPkU
T
k þ Q k ðT6Þ

where the linear approximation equations for system and
measurement matrices are obtained through the relations

Uk �
@f
@x

� �����
x¼xnom

k

; Hk �
@h
@x

� �����
x¼xnom

k

ðT7Þ

and dxk ¼ xk � xnom
k , dzk ¼ zk � hðxnom

k ; kÞ.
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crease the real-time computational burden. The off-line
computation is not possible for the EKF state estimates.
Fig. 2 presents the configuration of the EKF implementa-
tion with error sate estimate. Table 2 summarizes the
EKF equations via error state formulation.

For the configuration of the EKF with error state space
estimate, several differences should be noticed.

(1) x̂k ¼ x̂�k þ dx̂k. The total state estimate vector (x̂k) is
formed by summing the nominal (x̂�k ) with the esti-
mated incremental (delta) quantities (dx̂k). The
result is consistent with the result given in Section
2.3, the total state estimate configuration.

(2) x̂�kþ1 ¼ fðx̂k; kÞ. For an extended Kalman filter, the
current estimate is used to form the next nominal
point (i.e., the next point around which the linearisa-
tion will take place).

(3) dx̂�kþ1 ¼ 0. For an EKF, the state prediction is zeros
since after the update is made in the EKF, the incre-
mental quantities dx̂k is reduced to zero. The projec-
tion of dx̂k to the next step is trivial. The only
nontrivial projection is to project x̂k to x̂�kþ1.

2.3. The extended Kalman filter: total state estimate
configuration

The basic state variables in a LKF are incremental (delta)
quantities, rather than the total quantities. However, in an
EKF it is accessible to keep track of the total estimates
rather than the incremental ones. The basic linearised
measurement equation for the EKF can be written as

zk � hðx̂�k ; kÞ ¼ Hkdxk þ vk ð6Þ

Note that when working with incremental state vari-
ables, the measurement presented to the Kalman filter is
zk � hðx̂�k ; kÞ rather than the total measurement (nonlin-
ear) zk. Consider the incremental estimate update equation
at step k

dx̂k ¼ dx̂�k þ Kk½zk � hðx̂�k ; kÞ �Hkdx̂�k � ð7Þ

in which the measurement residual is written as
dzk ¼ zk � hðx̂�k ; kÞ and the predictive estimate of the mea-
surement is the sum of hðx̂�k ; kÞ and Hkdx̂�k . This is the noisy
measurement minus the predictive measurement based on
the corrected trajectory rather than the nominal one.

Adding x̂�k to both sides of the update equation leads to:

x̂�k þ dx̂k ¼ x̂�k þ dx̂�k þ Kk½zk � ẑ�k �

and finally

x̂k ¼ x̂�k þ Kk½zk � ẑ�k � ð8Þ

which is the estimate update equation written in terms of
total rather than incremental quantities. It simply says that
the a priori estimate is corrected by adding the measure-
ment residual appropriately weighted by the Kalman gain
matrix Kk. After the update is made in the extended Kal-
man filter, the incremental quantity is reduced to zero
and the projection of dx̂�k to the next step is then trivial.
The only nontrivial projection is to project x̂k to x̂�kþ1,
through the nonlinear dynamics: x̂�kþ1 ¼ fðx̂k; kÞ. Notice
that the additive white-noise forcing function wk is zero
in the projection step. Once x̂�kþ1 is determined, the predic-
tive measurement ẑ�kþ1 can be formed as hðx̂�kþ1; kþ 1Þ, and
the measurement residual at kþ 1 is formed as the differ-

Nonlinear 

System 

Aiding sources 

kx̂

kz
EKF 

Measurement prediction

)ˆ(ˆ −− = kk xhz

kzδ+

-

kx̂δ

Fig. 2. Configuration of the EKF with error sate estimate.

Table 2
Summary of EKF equations – error state formulation.

– Nonlinear model:
Dynamic model: xkþ1 ¼ fðxk; kÞ þwk

Measurement model: zk ¼ hðxkÞ þ vk

– Linearised model:
Linearised dynamic model: dxkþ1 ¼ ½@f

@x�
��
x¼x̂�

k
dxk þwk

Linearised measurement model: dzk ¼ ½@h
@x�
��
x¼x̂�

k
dxk þ vk

dzk ¼ zk � hðx̂�k ; kÞ

Kk ¼ P�k HT
k ½HkP�k HT

k þ Rk��1 ðT8Þ

dx̂k ¼ dx̂�k þ Kk½dzk �Hkdx̂�k � ðT9Þ

x̂k ¼ x̂�k þ dx̂k ðT10Þ

Pk ¼ ½I� KkHk�P�k ðT11Þ

x̂�kþ1 ¼ fðx̂k; kÞ ðT12Þ

dx̂�kþ1 ¼ 0 ðT13Þ

P�kþ1 ¼ UkPkU
T
k þ Q k ðT14Þ

where the linear approximation equations for system and
measurement matrices are obtained through the relations

Uk ¼
@f
@x

� �����
x¼x̂�

k

; Hk ¼
@h
@x

� �����
x¼x̂�

k

ðT15Þ
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ence ðzkþ1 � ẑ�kþ1Þ. The filter is then ready to go through
another recursive loop. Fig. 3 is the configuration of the
EKF with total sate estimate. Table 3 summarizes the EKF
equations via total state formulation.

3. Illustrative example – nominal trajectory in not
available

Illustrative examples are provided. Two EKF formula-
tions, i.e., total state estimate and error state estimate are
provided. The two architectures yield the same results
and therefore only one set of results is provided. The per-
formance of the LKF will be degraded significantly. The sit-
uation is illustrated by the following examples.

The scenario for simulation is as follow. The true trajec-
tory is assumed to move along a circle trajectory with a ra-
dius of 1 km, as shown in Fig. 4, is selected for simulation.
The location of the origin is at (4000,0) m location in the
local tangent ENU frame. The experiment was conducted
on a simulated vehicle trajectory originating from the posi-
tion of (5000,0) m location. The user was simulated to
move in the counter-clockwise direction, at 226 km/h
speed (62.832 m/s). The vehicle finally completes a circle
movement within the simulation period. Navigation solu-
tions were computed every 0.1 s, consequently, there are
1000 epochs recorded. The electronic navigation system
that uses the noisy measurement of range from the vehicle
to a known location as basic observable is the distance-
measuring equipment (DME). It is usually assumed
that the coordinates of the DME stations are known, and
the aircraft coordinates are to be estimated. In this
example, there are three ranging sources coming from
three DME stations, which are located at the following
positions: DME1 ¼ ð7000;�3000Þ m, DME2 ¼ ð3500;
5000Þ m, DME3 ¼ ð1000;�3000Þ m.

The basic differential equations of motion in the east (e)
and north (n) directions are €le ¼ 0þ ue

€ln ¼ 0þ un.
The dynamical equations are seen to be linear in this

case, so the differential equations for the incremental (del-
ta) quantities are the same as for the total state variables le

and ln, that is

d€le ¼ ue

d€ln ¼ un

Defining the filter state variables in terms of the incre-
mental positions and velocities:

Fig. 3. Configuration of the EKF with total sate estimate.

Table 3
Summary of EKF equations - total state formulation.

– Nonlinear model
Nonlinear dynamic model: xkþ1 ¼ fðxk; kÞ þwk

Nonlinear measurement model: zk ¼ hðxk; kÞ þ vk

Kk ¼ P�k HT
k ½HkP�k HT

k þ Rk��1 ðT16Þ

x̂k ¼ x̂�k þ Kk½zk � ẑ�k � ðT17Þ

Pk ¼ ½I� KkHk�P�k ðT18Þ

x̂�kþ1 ¼ fðx̂k; kÞ ðT19Þ

P�kþ1 ¼ UkPkU
T
k þ Q k ðT20Þ

where the linear approximation equations for system and
measurement matrices are obtained through the relations

Uk ¼
@fk

@x

����
x¼x̂�

k

; Hk ¼
@hk

@x

����
x¼x̂�

k

ðT21Þ

and ẑ�k ¼ hðx̂�k ; kÞ

(4000,0)m (5000,0)m 

Fig. 4. Reference East–North trajectory for the DME navigation example.
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x1 ¼ dle; x2 ¼ dve

x3 ¼ dln; x4 ¼ dvn

the state equations are

_x1

_x2

_x3

_x4

2
6664

3
7775 ¼

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

2
6664

3
7775

x1

x2

x3

x4

2
6664

3
7775þ

0
ue

0
un

2
6664

3
7775

The state variables are driven by the white-noise pro-
cesses ue and un.

Assuming that three simultaneous range measurements
are available, the three measurement equations in terms of
le and ln have the form

zi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðle � aiÞ2 þ ðln � biÞ2

q
þ v i; i ¼ 1 . . . m

where v i are additive white measurement noises. It can be
seen that the connection between the observables (zi) and
the quantities to be estimated (le and ln) is nonlinear. By
assuming that an approximate nominal position is known
at the time of the measurement, and that the locations of
the three DME stations are known exactly, the Hk matrix
can be found to be

Hk ¼
@h
@x
¼

h11 0 h13 0
h21 0 h23 0

..

. ..
. ..

. ..
.

hn1 0 hn3 0

2
66664

3
77775

where

hi1 ¼
ðle � aiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðle � aiÞ2 þ ðln � biÞ2
q ;

hi3 ¼
ðln � biÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðle � aiÞ2 þ ðln � biÞ2
q

are the direction cosine matrix elements. The nominal air-
craft position will change with each step of the recursive
process, so the terms of Hk are time-variable and must be
recomputed with each recursive step.

In this example it is assumed that the aircraft and the
three DME stations are all in a horizontal plane as shown
in Fig. 4. The process noise characteristics is given by
ue � Nð0; qeÞ; un � Nð0; qnÞ. These spectral amplitudes are
used to establish the Q k matrix:

Q k ¼

Dt3

3 qe
Dt2

2 qe 0 0
Dt2

2 qe Dt � qe 0 0

0 0 Dt3

3 qn
Dt2

2 qn

0 0 Dt2

2 qn Dt � qn

2
666664

3
777775

In practical design, the power spectral density (PSD)
values of the process noise should be properly tuned to re-
flect the vehicle dynamical profile. For straight and level
flight, a small Q k is appropriate. For turns or high dynam-
ics, a larger Q k should be used.

3.1. LKF performance

Performance based on three cases of nominal trajecto-
ries is discussed.

– Case A: Reference trajectory is given by the actual trajec-
tory (For demonstration purpose only. This is ideal but
unrealistic, since it is usually not available).

10
0

Fig. 5. Position estimation precision and the corresponding predicted 1 � r bound: small (qe ¼ qn ¼ 0ðm=s2Þ2=ðrad=sÞ) versus large (qe ¼ qn ¼
10ðm=s2Þ2=ðrad=sÞ) PSD values.
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Estimation precision can be improved in case the nom-
inal (reference) trajectory is improved. For an exactly accu-
rate reference trajectory, the zero dynamic process noise
(i.e., PSD: qe ¼ qn ¼ 0 ðm=s2Þ2=ðrad=sÞ) will be reasonable,
leading the estimation error to zero. For the test case
qe ¼ qn ¼ 10 ðm=s2Þ2=ðrad=sÞ, the value is more than en-
ough for convergence. As the PSD (or equivalently, Q k) in-
creases, the result merely becomes noisy without
noticeably change in the error mean. The confidence in
the quality of reference trajectory is the core factor for
determining the Q k. Fig. 5 shows the position estimation
precision and the corresponding predicted 1 � r bound
for small and large PSD values.

– Case B: Reference trajectory is given by the actual trajec-
tory corrupted by zero mean random errors.

The PSD qe ¼ qn ¼ 0 ðm=s2Þ2=ðrad=sÞ and the scaling fac-
tor to the unity random errors c ¼ 10;1, respectively are
used to control the magnitude of random errors in the
nominal trajectory. Fig. 6 provides the position estimation
precision and the corresponding predicted 1 � r bound for
small vs. large random errors in reference trajectories with
PSD: qe ¼ qn ¼ 0 ðm=s2Þ2=ðrad=sÞ).

– Case C: Reference trajectory is given by the actual trajec-
tory distorted by bias errors. For illustration, in this
example the position at the initial epoch is used as
the reference trajectory.

As the Q k increases, the estimation precision decreases,
and the result becomes more noisy and noisy. However,
the bias error cannot be eliminated, even though a very

c = 10 
c = 1 

Fig. 6. Position estimation precision and the corresponding predicted 1 � r bound: small (c ¼ 1) versus large (c ¼ 10) random errors in reference
trajectories (PSD: qe ¼ qn ¼ 0ðm=s2Þ2=ðrad=sÞ).

1000 

10 
1 

Fig. 7. Variation of the LKF estimation precision due to increase of process noise when reference trajectory is given by the actual trajectory distorted by bias
errors (PSD: qe ¼ qn ¼ 1000;10;1 ðm=s2Þ2=ðrad=sÞ).
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large Q k is applied. Fig. 7 shows the variation of the LKF
estimation precision due to increase of process noise when
reference trajectory is given by the actual trajectory dis-
torted by bias errors. (PSD: qe ¼ qn ¼ 1000;10;1 ðm=s2Þ2=
ðrad=sÞ).

3.2. EKF performance

As discussed in the preceding section, the EKF is similar
to a LKF except that the linearisation takes place about the
filter’s estimated trajectory, rather than a precomputed
nominal trajectory. If the problem is sufficiently observa-
ble, the deviations between the estimated trajectory and
the actual one should remain sufficiently small, and thus

10 

1 

Fig. 8. Variation of the EKF estimation precision due to increase of process noise (PSD: qe ¼ qn ¼ 10;1 ðm=s2Þ2=ðrad=sÞ).

Fig. 9. Illustration of the two-dimensional inertial navigation.

INS computed trajectory 2 

True trajectory  

INS computed trajectory 1 

(7793, 5632) 

Fig. 10. Two of the possible INS computed trajectories as compared to the true trajectory.
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the linearisation assumption is valid. Fig. 8 shows the
variation of the EKF estimation precision due to increase
of process noise with PSD: qe ¼ qn ¼ 10;1ðm=s2Þ2=ðrad=sÞ.

The result confirms validity of the discussion.
A limitation in applying Kalman filter to real-world

problems is that the a priori statistics of the stochastic

errors in both dynamic process and measurement models
are assumed to be available, which is difficult in practical
application. The suboptimal configuration is typically
based on a simplified error state dynamic/measurement
model. One way to take them into account is to consider
a nominal model affected by uncertainty.

EKF 

LKF 

LKF 

EKF 

LKF 

EKF 

(a) Small kQ

(b) Medium kQ

(c) Large kQ

Fig. 11. Variation of the estimation precision due to increase of process noise for LKF and EKF – example for trajectory 1.
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To fulfil the requirement of achieving the filter optimal-
ity, an adaptive Kalman filter (AKF) can be utilized as the
noise-adaptive filter for tuning the noise covariance matri-
ces and overcome the deficiency of Kalman filter. Adaptive

filtering is based on dynamically adjusting the parameters
of the filter. AKF’s can be performed based on an on-line
estimation of motion as well as the signal and noise statis-
tics available data. It can be seen that AKF with covariance

LKF 

LKF 

LKF 

EKF 

EKF 

EKF 

(a) Small kQ

(b) Medium kQ

(c) Large kQ

Fig. 12. Variation of the estimation precision due to increase of process noise for LKF and EKF – example for trajectory 2.
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estimation based adaptation technique will be helpful for
improving the precision in the EKF approach. However,
this is not valid for the LKF approach.

4. Illustrative example – nominal trajectory is available

The second example employed for illustration is a case
that the reference trajectory is available. One of the typical
examples is the integrated navigation system in which KF
fuses the INS (inertial navigation system) and DME data.
Essentially, there are two aspects of integration: open loop
(feedforward, equivalent to the LKF approach) versus
closed loop (feedback, equivalent to the EKF approach).
The differential equations describing the two-dimensional
inertial navigation state are given by:

_le

_ve
_ln

_vn

_w

2
666664

3
777775 ¼

ve

ae

vn

an

xr

2
666664

3
777775 ¼

ve

sinðwÞau þ cosðwÞav

vn

cosðwÞau � sinðwÞav

xr

2
666664

3
777775

where [au, av ] are the measured accelerations in the body
frame, xr is the measured yaw rate in the body frame, as
shown in Fig. 9. The error model for INS is augmented by
some sensor error states such as accelerometer biases
and gyroscope drifts. Actually, there are several random
errors associated with each inertial sensor. It is usually
difficult to set a certain stochastic model for each inertial
sensor that works efficiently at all environments and re-
flects the long-term behaviour of sensor errors. The diffi-
culty of modelling the errors of INS raised the need for a
model-less DME/INS integration technique. The following
set of linearised equations is employed:

d_le

d _ve

d_ln

d _vn

d _w

2
6666664

3
7777775
¼

0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

2
6666664

3
7777775

dle
dve

dln

dvn

dw

2
6666664

3
7777775
þ

0
ue

0
un

uw

2
6666664

3
7777775

which will be utilized in the integration Kalman filter as
the inertial error model for estimating the INS errors. The
parameters de and dn represent the east, and north position
errors; dve and dvn represent the east, and north velocity
errors; and dw represents yaw angle, respectively. The
measurement in the indirect formulation is made up en-
tirely of system errors and the filter and is almost indepen-
dent of vehicle motions.

The measurement model is written as

q1
q2

..

.

qn

2
6664

3
7775 ¼

q̂1

q̂2

..

.

q̂n

2
6664

3
7775þ

h11 0 h13 0 0
h21 0 h23 0 0

..

. ..
. ..

. ..
. ..

.

hn1 0 hn3 0 0

2
6664

3
7775

dle

dve

dln

dvn

dw

2
66664

3
77775þ

v1

v2

..

.

vn

2
6664

3
7775

Experiment was conducted on a simulated aircraft tra-
jectory originating from the (7793, 5632) m location. The
trajectory of the aircraft can be divided into two categories
according to the dynamic characteristics. The aircraft was
simulated to conduct constant-velocity straight-line dur-

ing the two time intervals, 0–320 and 961–1281 all at
353.43 km/h speed (98.17 m/s). Furthermore, it conducted
counter-clockwise circular motion with radius 10 km dur-
ing 321–960 s, where higher dynamic is involved. Fig. 10
shows two of the possible unaided INS computed trajecto-
ries as compared to the true trajectory. The noise PSDs for
accelerometers and gyroscopes used in the test case are as
follows.

1. Small Q k: qe ¼ qn ¼ 5e� 4; qw ¼ 5e� 5.
2. Medium Q k: qe ¼ qn ¼ 5e� 3; qw ¼ 5e� 4.
3. Large Q k: qe ¼ qn ¼ 500e� 4; qw ¼ 500e� 5.

There is no specific reason to choose the numerical
values.

There are three ranging sources coming from three DME
stations, which are located at the following positions:
DME1 ¼ ð3e5;�1e4Þm, DME2 ¼ ð2:5e5;2:5e5Þm, DME3 ¼
ð�1e4;3e5Þm. Furthermore, the noise characteristics is de-
scribed by: ue � Nð0; qeÞ; un � Nð0; qnÞ; and uw � Nð0; qwÞ.
These spectral amplitudes are used to establish the Q k

matrix.
Trajectory 1 has one, whereas Trajectory 2 has two re-

gions where large errors may be induced due to large lin-
earisation errors. Fig. 11 demonstrates variation of the
estimation precision due to increase of process noise using
the LKF and EKF for Trajectory 1. Fig. 12 demonstrates var-
iation of the estimation precision due to increase of pro-
cess noise using the LKF and EKF for Trajectory 2. The
estimation performance provided for illustration is the 2-
norm values of positioning errors.

What can be predicted is that even the adaptation algo-
rithm is incorporated into the linearised Kalman filter for
adapting Q k matrix, precision improvement (possibly at
the expense of precision degradation in the other regions)
is still very limited due to large linearisation errors and are
not likely to achieve acceptable precision. This implies that
increase of the Q k value will not be able to remedy the
deviation and the AKF with Q k adaptation will be little
helpful in such type of problem. It is seen that, form
Fig. 12, the errors will keep growing without bound after
approximately 1200 s. One needs to either find better lin-
earisation trajectories or choose better nonlinear models
to fulfil the precision requirement.

5. Conclusions

This paper has pointed out several critical remarks
which are useful for the designers in understanding, imple-
menting and verifying two forms of nonlinear Kalman filter.
An implementation-orientated approach is presented on
several issues of considerable importance in engineering
practice. Comparative study and critical remarks on the lin-
earised and extended Kalman filters have been involved. It
is hoped that the paper can serve as a tutorial to the readers
for providing better understanding and therefore correctly
implementing the two forms of nonlinear Kalman filter.
Lessons learned from this paper include: linearisation of
the nonlinear trajectories versus the system architectures,
detailed implementation algorithms, and behaviour on
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the estimation precision, which are useful in designing an
adequate suboptimal nonlinear Kalman filter.
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