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A navigation integration processing scheme, called the strong tracking unscented Kalman
filter (STUKF), is based on the combination of an unscented Kalman filter (UKF) and a
strong tracking filter (STF). The UKF employs a set of sigma points by deterministic

sampling, such that the linearization process is not necessary, and therefore the error caused
by linearization as in the traditional extended Kalman filter (EKF) can be avoided. As a
type of adaptive filter, the STF is essentially a nonlinear smoother algorithm that employs
suboptimal multiple fading factors, in which the softening factors are involved. In order to

resolve the shortcoming in traditional approach for selecting the softening factor through
personal experience or computer simulation, a novel scheme called the fuzzy strong tracking
unscented Kalman filter (FSTUKF) is presented where the Fuzzy Logic Adaptive System

(FLAS) is incorporated for determining the softening factor. The proposed FSTUKF
algorithm shows promising results in estimation accuracy when applied to the integrated
navigation system design, as compared to the EKF, UKF and STUKF approaches.

KEY WORDS

1. Integrated navigation. 2. Unscented Kalman filter. 3. Strong tracking filter. 4. Fuzzy logic.

1. INTRODUCTION. The Global Positioning System (GPS) (Brown and
Hwang 1997; Farrell and Barth 1999) is capable of providing accurate position
information. Unfortunately, the data is prone to jamming or being lost due to the
limitations of electromagnetic waves, which form the fundamental of their oper-
ation. The inertial navigation system (INS) (Salychev 1998) is a self-contained
system that integrates three acceleration components and three angular velocity
components. However, the error in position coordinates increases unboundedly as a
function of time. The GPS and INS have complementary operational character-
istics and the synergy of both systems has been widely explored. The GPS/INS in-
tegrated navigation system is the adequate solution to provide a navigation system
that has superior performance in comparison with either GPS or INS stand-alone
systems.

An integrated GPS/INS system (Brown and Hwang 1997; Farrell and Barth 1999)
is typically carried out through the extended Kalman filter (EKF). The EKF not only
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works well in practice, but also it is theoretically attractive because it has been shown
to be the filter that minimizes the variance of the estimation mean square error
(MSE). Nevertheless, the fact that the EKF depends highly on a predefined dynamics
model is a major drawback. To achieve good filtering results the designers are
required to have the complete a priori knowledge of both the dynamic process and
measurement models, in addition to the assumption that both the process and
measurement are corrupted by zero-mean Gaussian white sequences. If the input data
does not reflect the real model, the estimates may not be reliable.

Similar to the EKF, the unscented Kalman filter (UKF) (Wan and van der Merwe
2000; Wan and van der Merwe 2001; Simon 2006) focuses on approximating the
prediction probability characteristics and uses the standard minimum mean square
error estimator. The EKF uses first order Taylor series expansion, which can be
improved by higher order approximations at the expense of computational burden.
The UKF has been developed in the context of state estimation of dynamic systems as
a nonlinear distribution (or densities in the continuous case) approximation method.
The UKF is superior to the EKF not only in theory but also in many practical
situations. The algorithm performs the prediction of the statistics with a set of care-
fully chosen sample points for capturing mean and covariance of the system (Julier
et al. 2000; Julier and Uhlmann 2002). These sample points are sometimes referred to
as the sigma points employed to propagate the probability of state distribution. The
UKF can capture the states up to at least second order, while the EKF is only a first
order approximation.

The adaptive filter algorithm (Mehra 1972; Mohamed and Schwarz 1999; Ding,
et al. 2007; Hide, et al. 2003) has been one of the strategies considered for estimating
the state vector to prevent the divergence problem due to modelling errors. A rela-
tively new adaptive filter called the strong tracking Kalman filter (STKF) is pro-
posed by Zhou and Frank (1996). The STKF has several important merits,
including (1) strong robustness against model uncertainties ; (2) good real-time state
tracking capability, no matter whether the system has reached steady state or not;
(3) moderate computational load. A filter called the strong tracking unscented
Kalman filter (STUKF) is developed based on the combination of UKF and STKF.
In the STUKF, the softening factor is introduced to provide better state estimation
smoothness. The traditional approach for determining the softening factors relies
heavily on personal experience or computer simulation using a heuristic searching
scheme. To resolve the shortcoming, a new approach called the fuzzy strong track-
ing unscented Kalman filter (FSTUKF) is suggested. The fuzzy logic reasoning
system (Sasiadek, et al. 2000) based on the Takagi-Sugeno (T-S) model (Takagi and
Sugeno 1985) is incorporated into the STUKF. The fuzzy reasoning system is con-
structed to obtain suitable softening factors according to the time-varying change in
dynamics. By monitoring the innovation information, the FLAS (which is the filter’s
internal mode) is employed to dynamically adjust the softening factors based on
the fuzzy rules so as to enhance the estimation accuracy and tracking capability. The
example in tightly-coupled GPS/INS integrated navigation processing based on the
FSTUKF will be presented. Performance comparison will be demonstrated using
the proposed FSTUKF method as compared to the EKF, UKF, and STUKF ap-
proaches.

This paper is organized as follows. In Section 2, preliminary background on
the strong tracking unscented Kalman filter for navigation processing is discussed.
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The proposed strategy, fuzzy strong tracking unscented Kalman filter approach, is
introduced in Section 3. In addition, the parameters to determine the degree of
divergence (DOD) are introduced to identify the degree of change in vehicle dynamics
and to design the membership functions based on the innovation information. In
Section 4, navigation integration processing and performance evaluation are carried
out to evaluate the performance of the FSTUKF and STUKF approaches in com-
parison to those by conventional UKF and EKF approaches. Conclusions are given
in Section 5.

2. THE STRONG TRACKING UNSCENTED KALMAN
FILTER. Kalman filtering has been recognized as one of the most powerful
state estimation techniques. The purpose of the Kalman filter is to provide the esti-
mation with minimum error variance. The extended Kalman filter is a nonlinear
version of the Kalman filter and is widely used for navigation processing. The ex-
tended Kalman filter deals with the case governed by the nonlinear stochastic differ-
ence equations:

xk+1=fk(xk)+wk (1a)

zk=hk(xk)+vk (1b)

where the state vector xk 2 <n, process noise vector wk 2 <n, measurement vector
zk 2 <m, and measurement noise vector vk 2 <m. In Equation (1), both the vectors
wk and vk are zero mean Gaussian white sequences having zero cross-correlation with
each other:

E[wkw
T
i ]=

Qk, i=k
0, ilk

�
; E[vkv

T
i ]=

Rk, i=k
0, ilk

�
; E[wkv

T
i ]=0 for all i and k (2)

where Qk is the process noise covariance matrix, Rk is the measurement noise co-
variance matrix.

The discrete-time Extended Kalman filter algorithm is summarized as follows:

A. Measurement update equations:

– Initialize state vector and state covariance matrix: x̂0
x and P0

x

– Compute Kalman gain matrix from state covariance and estimated measure-
ment covariance:

Kk=Px
k HT

k [HkP
x
k HT

k+Rk]
x1 (3)

– Multiply prediction error vector by Kalman gain matrix to get state correc-
tion vector and update state vector:

x̂xk=x̂x
x
k +Kk[zkxhk(x̂x

x
k )] (4)

– Update error covariance

Pk= IxKkHk½ �Px
k (5)
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B. Time update equations:

– Predict new state vector and state covariance matrix

x̂x
x
k =fkx1(x̂x

x
kx1) (6)

Px
k+1=WkPkW

T
k+Qk (7)

where the linear approximation equations for system and measurement matrices are
obtained through the relations

Wk �
@fk
@x

����
x=x̂x

x
k

; Hk �
@hk
@x

����
x=x̂x

x
k

(8)

In the EKF, the state distribution is approximated by a Gaussian random variable
(GRV), which is then propagated analytically through the first-order linearization of
the nonlinear system. Wan and van der Merwe (2000) pointed out that this will
introduce large errors in the true posterior mean and covariance of the transformed
GRV and lead to suboptimal performance and sometimes filter divergence. Further
detailed discussion can be referred to Brown and Hwang (1997), Farrell and Barth
(1999), and Gelb (1974).

2.1. Unscented Kalman Filter. The basic premise behind the unscented Kalman
filter is that it is easier to approximate a Gaussian distribution than it is to approxi-
mate an arbitrary nonlinear function. Instead of linearizing using Jacobian matrices
as in the EKF and achieving first-order accuracy, the UKF uses a deterministic
sampling approach to capture the mean and covariance estimates with a minimal set
of sample points. The UKF was first proposed by Julier, et al. (1995) to address
nonlinear state estimation in the context of control theory. The UKF addresses this
problem by using a deterministic sampling approach. The state distribution is also
approximated by a GRV, but is represented using a minimal set of sample points.
These sample points are carefully chosen so as to completely capture the true mean
and covariance of the GRV.When the sample points are propagated through the true
nonlinear system, the posterior mean and covariance can be captured accurately to
the 3rd order of Taylor series expansion for any nonlinear system. One of the re-
markable merits is that the overall computational complexity of the UKF is the same
as that of the EKF (Wan and van der Merwe 2000).

The first step in the UKF is to sample the prior state distribution, i.e., generate the
sigma points through the unscented transformation (UT) (Julier, et al. 2000; Julier,
2002; Julier and Uhlmann 2002). The unscented transform is a method for calculat-
ing the statistics of a random variable which undergoes a nonlinear transformation.
The basic premise is that to approximate a probability distribution is easier than to
approximate an arbitrary nonlinear transformation. A set of weighted samples or
sigma points are deterministically chosen so that they completely capture the true
mean and covariance of the random variable. The samples are propagated through
true nonlinear equations, and the linearization of the model is not necessary.

Suppose the mean �xx and covariance P of vector x are known, a set of deterministic
vectors called sigma points can then be found. The ensemble mean and covariance of
the sigma points are equal to �xx and P. The nonlinear function y=f(x) is applied to
each deterministic vector to obtain transformed vectors. The ensemble mean and
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covariance of the transformed vectors will give a good estimate of the true mean and
covariance of y, which is the key to the unscented transformation. Figure 1 illustrates
the mapping of the UKF versus that of the EKF, through the transformation of : (1)
the nonlinear function f(.), shown on the top portion of the figure, and (2) its
Jacobian/Hessian F, shown at the bottom portion of the figure. The dot-line ellipse
represents the true covariance; the solid-line ellipse represents the calculated covari-
ance. The UKF approach estimates are expected to be closer to the true values than
the EKF approach.

Consider an n dimensional random variable x, having the mean x̂ and covariance
P, and suppose that it propagates through an arbitrary nonlinear function f. The
unscented transform creates 2n+1 sigma vectors X (a capital letter) and weighted
points W, given by

X(0)=x̂x (9)

X(i)=x̂x+(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n+l)P

p
)Ti , i=1, :::, n (10)

X(i+n)=x̂xx(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n+l)P

p
)Ti , i=1, :::, n (11)

W
(m)
0 =

l

(n+l)
(12)

W
(c)
0 =W

(m)
0 +(1xa2+b) (13)

W
(m)
i =W

(c)
i =

1

2(n+l)
, i=1, :::, 2n (14)

where (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n+l)P

p
)i is the ith row (or column) of the matrix square root. (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n+l)P

p
)i

can be obtained from the lower-triangular matrix of the Cholesky factorization;
l=a2(n+k)xn is a scaling parameter ; a determines the spread of the sigma points
around x

_
and is usually set to a small positive (e.g.,1ex4faf1); k is a secondly

scaling parameter (usually set as 0) ; b is used to incorporate prior knowledge of the
distribution of �xx (When x is normally distributed, b=2 is an optimal value) ; Wi

(m) is
the weight for the mean associated with the ith point ; and Wi

(c) is the weight for the
covariance associated with the ith point.

Figure 1. Illustration of properties of UKF and EKF (Li et al. 2006)
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The sigma vectors are propagated through the nonlinear function to yield a set
of transformed sigma points,

yi=f (Xi) i=0, :::, 2n (15)

The mean and covariance of yi are approximated by a weighted average mean and
covariance of the transformed sigma points as follows:

�yyu=
X2n
i=0

W
(m)
i yi (16)

�PPu=
X2n
i=0

W
(c)
i (yix�yyu)(yix�yyu)

T (17)

As compared to the EKF’s linear approximation, the unscented transformation is
accurate to the second order for any nonlinear function.

To look at the detailed algorithm of the UKF, firstly, the set of sigma points are
created by Equations (10) and (11). After the sigma points are generated, the time
update (prediction step) of the UKF includes the following steps:

(&xk )i=f ((Xx
k )i), i=0, :::, 2n (18)

x̂x
x
k =

X2n
i=0

W
(m)
i (&xk )i (19)

Px
k =

X2n
i=0

W
(c)
i [(&xk )ixx̂x

x
k ][(&xk )ixx̂x

x
k ]T+Qk (20)

(Zx
k )i=h((&xk )i) (21)

ẑz
x
k =

X2n
i=0

W
(m)
i (Zx

k )i (22)

The measurement update (correction) step of the UKF involves the following
steps:

Pnn=
X2n
i=0

W
(c)
i [(Zx

k )ixẑz
x
k ][(Zx

k )ixẑz
x
k ]T+Rk (23)

Pxz=
X2n
i=0

W
(c)
i [(&xk )ixx̂x

x
k ][(Zx

k )ixẑz
x
k ]T (24)

Kk=PxzP
x1
nn (25)

x̂xk=x̂x
x
k +Kk(zkxẑz

x
k ) (26)

Pk=Px
k xKkPnnK

T
k (27)

The samples are propagated through true nonlinear equations; the linearization is
unnecessary (Calculation of Jacobian is not required). They can capture the states up
to at least second order, whereas the EKF is only a first order approximation.
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2.2. The Strong Tracking Unscented Kalman Filter. The process model is de-
pendent on the dynamical characteristics of the vehicle onto which the navigation
system is placed. In order to overcome the defect of the conventional Kalman filtering,
Zhou and Frank (1996) proposed a concept of a strong tracking Kalman filter. The
STKF has several important merits, including (1) strong robustness against model
uncertainties ; (2) good real-time state tracking capability, no matter whether the
system has reached steady state or not ; (3) moderate computational load. The filter is
called the STKF only if the filter satisfies the orthogonal principle stated as follows:

Orthogonal principle : The sufficient condition for a filter to be called the STKF only if the

time-varying filter gain matrix be selected on-line such that the innovations remain orthog-
onal (Zhou and Frank 1996):

E[nkn
T
j ]=0, klj (28)

Equation (28) is required to ensure that the innovation sequence will remain orthog-
onal. The time-varying suboptimal scaling factor is incorporated, for on-line tuning
of the covariance of the predicted state, which adjusts the filter gain, and accordingly
the STKF is developed.

Based on the similar idea, the combination of unscented Kalman Filter and strong
tracking filter leads to the strong tracking unscented Kalman filter (STUKF). As in
the STKF, suboptimal fading factors (Xia, 1994) are introduced into the nonlinear
smoother algorithm in the so-called STUKF algorithm. The suboptimal scaling fac-
tor in the time-varying filter gain matrix is given by:

si, k=
tr[gVkxeRk]

tr[Pnn]
=

si, k, si, k>1

1, si, kf1

(
ð29Þ

Vk=
n0n

T
0

[rVkx1+nkn
T
k ]

1+r
, ko2

8><
>: ð30Þ

The covariance matrix needs to be updated the following way. The new Pk
x needs to

be modified and can be obtained by multiplying Equation (20) by the factor Sk :

Px
k =Sk

X2n
i=0

W
(c)
i [(&xk )ixx̂x

x
k ][(&xk )ixx̂x

x
k ]T+Qk

( )
(31)

Similarly, the covariance matrix Pnn and Pxz, as represented by Equations (23) and
(24), respectively, can also be modified and rewritten as:

Pnn=Sk

X2n
i=0

W
(c)
i [(Zx

k )ixẑz
x
k ][(Zx

k )ixẑz
x
k ]T+Rk

( )
(32)

Pxz=Sk

X2n
i=0

W
(c)
i [(&xk )ixx̂x

x
k ][(Zx

k )ixẑz
x
k ]T

( )
(33)

where Sk=diag(s1, s2, …, sm). The main difference between different fading mem-
ory algorithms is in the calculation of scale factor matrix Sk. One approach is to
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assign the scale factors as constants. When sif1(i=1,2, …, m), the filtering is in a
steady state processing while si>1, the filtering may tend to be unstable. For the
case si=1, it deteriorates to the standard Kalman filter. The key parameter in the
STUKF is the fading factor matrix Sk, which is dependent on three parameters,
including (1) g ; (2) the forgetting factor (r) ; (3) and the softening factor (e). In
such a case, the STUKF based on multiple fading factors deteriorates to a
STUKF based on a single fading factor. The range of the forgetting factor is
0<rf1. The softening factor e is utilized to improve the smoothness of state
estimation. A larger e (with value no less than 1) leads to better estimation accu-
racy; while a smaller e provides stronger tracking capability. The value is usually
determined empirically through computer simulation and 1fef5 is commonly
selected.

3. THE PROPOSED SENSOR FUSION STRATEGY. Figure 2 shows
the flow chart of the proposed FSTUKF implementation. The flow chart essentially
contains two portions. The block on the right hand side indicated by the dashed-
line is the fuzzy logic adaptive system (FLAS) for determining the value of soften-
ing factor e. The rest represents the STUKF loop.

3.1. The Fuzzy Logic Adaptive System (FLAS). Fuzzy logic was first developed
by Zadeh in the mid-1960s for representing uncertain and imprecise knowledge. It
provides an approximate but effective means of describing the behaviour of systems
that are too complex, ill-defined, or not easily analyzed mathematically. A typical
fuzzy system consists of three components, that is, fuzzification, fuzzy reasoning
(fuzzy inference), and fuzzy defuzzification, as shown in Figure 3. The fuzzification
process converts a crisp input value to a fuzzy value, the fuzzy inference is responsible
for drawing calculations from the knowledge base, and the fuzzy defuzzification
process converts the fuzzy actions into a crisp action.

The fuzzification modules : (1) transforms the error signal into a normalized fuzzy
subset consisting of a subset for the range of the input values and a normalized
membership function describing the degree of confidence of the input belonging to
this range; (2) selects reasonable and good, ideally optimal, membership functions
under certain convenient criteria meaningful to the application. The characteristics of
the fuzzy adaptive system depend on the fuzzy rules and the effectiveness of the rules
directly influences its performance. To obtain the best deterministic output from
a fuzzy output subset, a procedure for its interpretation, known as defuzzification
should be considered. Defuzzification is used to provide the deterministic values of a
membership function for the output. Using fuzzy logic to infer the consequence of a
set of fuzzy production rules invariably leads to fuzzy output subsets.

Fuzzy modelling is the method of describing the characteristics of a system using
fuzzy inference rules. In this paper, a Takagi-Sugeno (T-S) fuzzy system is used to
detect the divergence of EKF and adapt the filter. Takagi and Sugeno proposed a
fuzzy modelling approach to model nonlinear systems. The T-S fuzzy system re-
presents the conclusion by functions.

A typical rule in the T-S model has the form:

IF Input x1 is F1
1 and Input x2 is F 2

1 … and Input xn is Fn
1

THEN Output yk=fk(x1, x2, …, xn)=Ck0+Ck1x1+…+Cknxn.
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where Cki(i=0yn) are constants in the k -th rule. For the first-order model, we have
the rule in the form:

IF Input x1 is F1
1 and Input x2 is F 2

1

−
0x̂  and −

0P

xX ˆ)0( =

X(i ) = x̂ + ( (n + λ)P)i
T , ,...,ni 1=

X(i+n) = x̂ − ( (n + λ)P)i
T , ,...,ni 1=

))(()( ikik f −− = Xζ , n,...,i 20=

x̂k
− = Wi

(m)(λk
− )i

i=0

2n

∑ ; ∑=
=

−− n

i
ik

m
ik W

2

0

)( )(ˆ Zz

(Zk
− )i = h((ς k

− )i ) , n,...,i 20=

Pνν = Sk Wi
(c)[(Zk

− )i − ẑk
− ][(Zk

− )i − ẑk
− ]T + Rk

i=0

2n

∑







Pxz = Sk Wi
(c)[(ς k

− )i − x̂k
− ][(Zk

− )i − ẑk
− ]T

i=0

2n

∑







Kk = PxzPνν
−1

)ˆ(ˆˆ −− −+= kkkkk zzKxx

Pk = Pk
− − KkPννKk

T

1+= kk

si,k =
tr[ηVk − εRk ]

tr[Pνν ]
=

si,k , si,k > 1

1, si,k ≤ 1





Vk =
ν0ν0

T

[ρVk −1 + νkνk
T ]

1+ ρ
, k ≥ 2









νk = zk − ẑk
−

ξ =
νk

Tνk

m

ζ =
1

m
| ν i |

i=1

m

∑

Determination of ε
through FLAS

FLAS

Pk
− = Sk Wi

(c)[(ς k
− )i − x̂k

− ][(ς k
− )i − x̂k

− ]T

i=0

2n

∑ + Qk









Figure 2. Flow chart of the FSTUKF.
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THEN Output yk=C10+C11x1+C12x2.

where F 1
1 and F 2

1 are fuzzy sets and C10, C11 and C12 are constants. For a zero-order
model, the output level is a constant :

IF Input x1 is F1
1 and Input x2 is F 2

1 THEN Output yk=C10.

The output is the weighted average of the yk :

y=
XM
k=1

wk �yk (34)

where the weights wk are computed as

wk=

Qn
i=1 mFk

i
(xi)PM

j=1

Qn
i=1 mFj

i
(xi)

h i (35)

with
PM

i=1 wi=1, and the m’s represent the membership functions.

3.2. Fuzzy Strong Tracking Unscented Kalman Filter. The degree of divergence
(DOD) parameters for identifying the degree of change in vehicle dynamics need to
be defined. Examples for possible approaches are given as follows. The innovation
information at the present epoch is employed for timely reflection of the change in
vehicle dynamics. The DOD parameter j can be defined as the trace of innovation
covariance matrix at present epoch (i.e., the window size is one) divided by the
number of satellites employed for navigation processing:

j=
nTk nk
m

(36)

where vk=[v1 v2 … vn]
T, m is the number of measurements (number of satellites).

Furthermore, the averaged magnitude of innovation at the present epoch can also
be used:

f=
1

m

Xm
i=1

jnij (37)

In the FLAS, the DOD parameters are employed as the inputs for the fuzzy inference
engines. By monitoring the DOD parameters, the FLAS is able to on-line tune the
softening factor according to the fuzzy rules. For this reason, this scheme can adjust

Membership functions 

Rule base

Fuzzification Fuzzy inference Defuzzification 

Figure 3. A fuzzy system.
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the fading factors adaptively and therefore improves estimation performance. When
the softening factor is smaller, the tracking capability of STUKF is better ; while the
softening factor is larger, the tracking accuracy of STUKF is improved. The FLAS is
employed to tune the softening factor according to the innovation information, in
terms of both tracking capability and estimation accuracy.

4. NAVIGATION INTEGRATION PROCESSING AND
PERFORMANCE EVALUATION. Simulation experiments have been car-
ried out to evaluate the performance of the proposed approach in comparison with
the conventional methods for GPS/INS integrated navigation system processing.
The tightly-coupled configuration is employed for demonstration. Simulation
was conducted using a personal computer with AMD Athlon 64r2 Dual Core
Processor 3800+2.0 GHz CPU. Computer codes were constructed using the
Matlab1 6.5 version software. The commercial software Satellite Navigation
(SATNAV) Toolbox by GPSoft LLC was employed for generating the satellite pos-
itions and pseudoranges. The satellite constellation was simulated and the error
sources corrupting GPS measurements include ionospheric delay, tropospheric de-
lay, receiver noise and multipath. Assume that the differential GPS mode is used
and most of the errors can be corrected, but the multipath and receiver thermal
noise cannot be eliminated. Figure 4 shows the architecture of the tightly-coupled
GPS/INS integrated navigation processing based on the FLAS-coupled STUKF
mechanism. The measurement is the residual between GPS pseudorange and INS
predicted range, which is used as the measurement of the UKF.

The differential equations describing the two-dimensional inertial navigation state
are (Farrell and Barth 1999):

_nn
_ee
_vvn
_vve
_yy

2
66664

3
77775=

vn
ve
an
ae
vr

2
66664

3
77775=

vn
ve

cos (y)aux sin (y)av
sin (y)au+ cos (y)av

vr

2
66664

3
77775 (38)

INS

GPS STUKF 

Range prediction )( INSxh

FLAS 

ε
–– kk zz ˆ

+ 
- kz

Pseudoranges

Integrated navigation output 

FSTUKF 

Figure 4. Integrated navigation processing using the FSTUKF.
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where [au, av] are the measured accelerations in the body frame, vr is the measured
yaw rate in the body frame, as shown in Figure 5. The error model for INS is
augmented by some sensor error states such as accelerometer biases and gyroscope
drifts. Actually, there are several random errors associated with each inertial sensor.
It is usually difficult to set a certain stochastic model for each inertial sensor that
works efficiently in all environments and reflects the long-term behaviour of sensor
errors. The difficulty of modelling the errors of INS raised the need for a model-less
GPS/INS integration technique. Linearization of Equation (38) results in the follow-
ing set of linearized equations

d _nn

d _ee

d _vvn

d _vve

d _yy

2
666664

3
777775=

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0
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2
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3
777775
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dvn

dve
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2
666664

3
777775+

0

0

wn

we

wy

2
666664

3
777775 (39)

which will be utilized in the integration Kalman filter as the inertial error model. In
Equations (39), dn and de represent the east, and north position errors ; dvn and dve
represent the east, and north velocity errors ; and dy represent yaw angle, respect-
ively.

The measurement model is written as
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2
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2
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3
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v2

..

.

vn

2
66664

3
77775 (40)

The experiment was conducted on a simulated vehicle trajectory originating from
the (0,0) m location. The simulated outputs for the accelerometers and gyroscope are
shown in Figure 6. The trajectory of the vehicle can be approximately divided into
two categories according to the dynamic characteristics. The vehicle was simulated to
conduct constant-velocity straight-line during the two time intervals, 0–100, 301–400,
501–550 and 651–800s, all at a speed of 10p m/s. Furthermore, it conducted clock-
wise circular motion with radius 1000 metres during 101–300, 401–500 and 551–650s,

ψ

East

North 

va

ua

Figure 5. Illustration of the two-dimensional inertial navigation.
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where high dynamic manoeuvring is involved. The following parameters were
used: the values of noise standard deviation are 1ex2 m/s2 for accelerometers and
gyroscopes. Trajectory for the simulated vehicle (solid) and the unaided INS derived
position (dashed) is shown in Figure 7 and Figure 8 shows the east and north com-
ponents of INS navigation errors.

Figure 6. The simulated outputs for the accelerometers and gyroscope.

Figure 7. Trajectory for the simulated vehicle (solid) and the INS derived position (dashed).
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The process noise covariance matrix is given by

Qk=

0 0 0 0 0

0 0 0 0 0

0 0 4ex4 0 0

0 0 0 4ex4 0

0 0 0 0 4ex5

2
666664

3
777775 (41)

and the parameters utilized in the STUKF are given as follows: a=1ex4, b=2,
k=0, g=0.2, r=0.1, and the softening factor e=4.5. The sigma points capture the
same mean and covariance irrespective of the choice of matrix square root which is
used. The numerical efficient and stable method such as the Cholesky factorization
has been used in obtaining the sigma points.

The softening factor e in the STUKF is a constant and does not change subject
to the change in dynamics. In the FSTUKF, e is determined by the FLAS. Both
the author-developed codes and the built-in function in FUZZY TOOLBOX of
Matlab have been employed for performing the fuzzy logic function. Comparison
of the results based on the author-developed one with the built-in function in
FUZZY TOOLBOX has been conducted and both methods lead to the same result.

The philosophy for defining the rules is straightforward: (1) for the case that the
DOD parameter is small, our objective is to obtain results with better estimation
accuracy, and a larger softening factor e should be applied; (2) for the case that the
DOD parameter is increased, our objective is to increase the tracking capability, and
a smaller softening factor should be applied. The membership functions (MFs) of

Figure 8. East and north components of INS navigation errors.
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input fuzzy variable DOD parameters as shown in Figure 9 are triangle MFs, ob-
tained by the function:

m(x)=

0 xfa

xxa
bxa afxfb

cxx
cxb bfxfc

0 cfx

8>>>><
>>>>:

(42)

The first-order T-S model has been employed. The zero-order model needs more
complicated MFs and rule base and is, therefore, more difficult to determine. The
presented FLAS is the If-Then form and consists of 9 rules.

1. IF j is zero and f is zero THEN e is 3j+3f+6
2. IF j is zero and f is small THEN e is 3j+3f+6
3. IF j is zero and f is large THEN e is 3j+3f+6
4. IF j is small and f is zero THEN e is j+f+2
5. IF j is small and f is small THEN e is j+f+2
6. IF j is small and f is large THEN e is 1
7. IF j is large and f is zero THEN e is 1
8. IF j is large and f is small THEN e is 1
9. IF j is large and f is large THEN e is 1

Figures 10–13 provide the integrated navigation results using the EKF, UKF,
STUKF and FSTUKF approaches. Before the FLAS is incorporated, evaluation of
navigation accuracy for UKF and STUKF is presented, shown in Figures 10 and 11.

Figure 9. Membership functions of input fuzzy variables j (top) and f (bottom).
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UKF

UKF

STUKF

STUKF

Figure 11. Navigation accuracy comparison for STUKF and UKF.

EKF
UKF

UKF 

EKF

Figure 10. Navigation accuracy comparison for UKF and EKF.
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Performance comparison between EKF and UKF is shown in Figure 10, while per-
formance comparison between STUKF and UKF is shown in Figure 11. Figure 12
shows performance comparison for the FSTUKF, STUKF and UKF. When the

UKF

UKF
FSTUKF 

FSTUKF 

STUKF (dashed)

STUKF (dashed) 

Figure 12. Navigation accuracy comparison for FSTUKF, STUKF and UKF.

FSTUKF FSTUKF 

STUKF 
STUKF 

UKF 
UKF 

EKF 

EKF 

Figure 13. Comparison of east and north position errors via four approaches: EKF, UKF,

STUKF and FSTUKF (from left to right).
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vehicle is in high dynamic environments, a smaller softening factor e will be required
for better tracking capability ; when the vehicle is in lower dynamic environments,
a larger e will be needed for better estimation precision (i.e., smoother results).
Accordingly, as the improved version of STUKF, the FSTUKF employs the FLAS
for automatically adjusting the value of e. It can be seen that substantial estimation
accuracy improvement is obtained by using the proposed technique. Figure 13 pro-
vides comparison of east and north position errors via all the four approaches: EKF,
UKF, STUKF, and FSTUKF.

Some remarks are given as follows.

(1) In the four time intervals, 0–100, 301–400, 501–550 and 651–800s, the vehicle is
not manoeuvring and is conducting constant-velocity straight-line motion. For
this case, all the EKF, UKF, STUKF and FSTUKF provide equivalently good
results. The navigation accuracies based on the four approaches have relatively
small differences. By use of the T-S fuzzy logic, the FLAS senses smaller values
of DOD parameters, and gives a larger softening factor. With large softening
factors, the UKF, STUKF and FSTUKF deteriorate to the EKF. As a result,
the navigation accuracies based on the EKF, UKF, STUKF and FSTUKF are
equivalent.

(2) In the three time intervals, 101–300, 401–500 and 551–650s, the vehicle is
manoeuvring. The mismatch of the model leads the STUKF to larger navi-
gation error while the FLAS timely detects the increase of DOD parameter,
and then reduces softening factor so as to maintain good tracking capability.
It has been verified that, by monitoring the innovation information, the
FSTUKF has good capability to detect the change in vehicle dynamics and

Figure 14. The fading factors given by STUKF (top) and FSTUKF (bottom).
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adjust the softening factor preventing the divergence and having better
navigation accuracy.

Figure 14 shows the fading factors resulting from STUKF and FSTUKF, re-
spectively. For the three regions of high dynamic environments, the fading factors
using FSTUKF have been amplified at a higher rate as compared to the STUKF.

5. CONCLUSION. This paper has presented a fuzzy strong tracking un-
scented Kalman filter for GPS/INS navigation processing to prevent the divergence
problem in high dynamic environments. For the nonlinear estimation problem,
alternatives for the extended Kalman filter (EKF) have been employed. The UKF is
a nonlinear, distribution approximation method which uses a finite number of sig-
ma points to propagate the probability of state distribution through the nonlinear
dynamics of the system. The UKF ensures a better description of the vehicle
dynamics and exhibits superior navigation accuracy when compared with classical
EKF since the series approximations in the EKF algorithm can lead to poor re-
presentations of the nonlinear functions and probability distributions of interest.
A traditional strong tracking unscented Kalman filter (STUKF) approach to deter-
mine the softening factors relies heavily on personal experience or computer simu-
lation using a heuristic searching scheme.

The fuzzy system has been employed to improve the STUKF performance.
Through the use of fuzzy logic, the FLAS has been incorporated into the FSTUKF as
amechanism for timely detection of the dynamical changes and implementation of the
on-line determination of softening factors by monitoring the innovation information
so as to maintain good estimation accuracy and tracking capability. Through the
incorporation of FLAS, a lower order of filter model can be utilized and therefore,
less computational effort will be sufficient without compromising estimation accu-
racy significantly. When a designer does not have sufficient information to develop
the complete filter models or when the filter parameters slowly change with time, the
fuzzy system can be employed to enhance the STUKF performance. Performance
comparisons on EKF, UKF, STUKF and FSTUKF have been conducted and the
FSTUKF algorithm leads to very promising results in both navigational accuracy
and tracking capability.
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